翻訳と辞書
Words near each other
・ Great Yorkshire Railway Preservation Society
・ Great Yorkshire Run
・ Great Yorkshire Show
・ Great Zab
・ Great Zimbabwe
・ Great Zimbabwe University
・ Great Zlatoust Church
・ Great Žemaičių Kalvarija Festival
・ Great-billed hermit
・ Great-billed heron
・ Great-billed kingfisher
・ Great-billed mannikin
・ Great-billed parrot
・ Great-billed seed finch
・ Great-circle distance
Great-circle navigation
・ Great-tailed grackle
・ Great-tailed triok
・ Great-West Lifeco
・ Great-winged petrel
・ GreatAmerica Financial Services
・ GreatAmericans.com
・ GreatAuPair
・ Greatbatch
・ GreatCall
・ Greatcoat
・ Greater
・ Greater (flamingo)
・ Greater Accra Region
・ Greater Adana


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Great-circle navigation : ウィキペディア英語版
Great-circle navigation

Great-circle navigation is the practice of navigating a vessel (a ship or aircraft) along a great circle. A great circle track is the shortest distance between two points on the surface of a sphere; the Earth isn't exactly spherical, but the formulas for a sphere are simpler and are often accurate enough for navigation (see the numerical example).
==Course and distance==

The great circle path may be found using spherical trigonometry; this is the spherical version of the ''inverse geodesic problem''.
If a navigator begins at ''P''1 = (φ11) and plans to travel the great circle to a point at point ''P''2 = (φ22) (see Fig. 1, φ is the latitude, positive northward, and λ is the longitude, positive eastward), the initial and final courses α1 and α2 are given by formulas for solving a spherical triangle
:\begin
\tan\alpha_1&=\frac},\\
\tan\alpha_2&=\frac},\\
\end
where λ12 = λ2 − λ1〔In the article on great-circle distances,
the notation Δλ = λ12
and Δσ = σ12 is used. The notation in this article is needed to
deal with differences between other points, e.g., λ01.〕
and the quadrants of α12 are determined by the signs of the numerator and denominator in the tangent formulas (e.g., using the atan2 function).
The central angle between the two points, σ12, is given by
:
\cos\sigma_=\sin\phi_1\sin\phi_2+\cos\phi_1\cos\phi_2\cos\lambda_.
}
The distance along the great circle will then be ''s''12 = ''R''σ12, where ''R'' is the assumed radius
of the earth and σ12 is expressed in radians.
Using the mean earth radius, ''R'' = ''R''1, yields results for
the distance ''s''12 which are within 1% of the
geodesic distance for the WGS84 ellipsoid.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Great-circle navigation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.